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A simple analytical model is derived for composite tubes subjected to bending and torsion. The model is
applied to a novel design of composite tube that exhibits bend–twist coupling such that the shear center
of the cross section is away from the tube axis. Analytical expressions are derived for the shear center
distance – distance of the shear center from the tube axis. Finite element analysis of the tubes is per-
formed using shell elements. The agreement between analytical and numerical results is excellent. It is
found that the shear center distance is independent of the radius of the tube but proportional to the
length of the tube and it is also a function of coefficient of mutual influence of the composite material.
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1. Introduction bend–twist coupling in the aforementioned tube. Behavior of the
Elastic coupling including bend–twist (BT) coupling in compos-
ite structures has been a subject of research since the advent of
fiber reinforced composite materials. Earliest interest in exploiting
the coupling was in aero-elastic tailoring of aircraft wings, e.g.,
[1,2]. Most of the early works on understanding the effects of BT
coupling were concerned with laminated composites [2]. A discus-
sion on various elastic coupling in laminated composites can be
found in [3]. Recently there has been interest in implementing
the BT coupling in wind-turbine blades [4] and in composite mar-
ine propellers [5]. While most research on elastic coupling has
focused on flat plates or shallow shells, not much work has been
done in using the coupling effects in circular tubes.

Tubular structures are efficient when the loading is a
combination of bending and torsion. Tubes made of homogeneous
materials, either isotropic or anisotropic, are axisymmetric and
hence there will be no coupling between flexural and torsional
deformations. However, there are applications wherein a trans-
verse force has to be applied to a tubular lever eccentrically (see
Fig. 1) without causing the tube to twist. That is, the shear center
has to be away from the axis of the tube. There may be other
requirements such as the tube should have equal bending rigidity
in all planes.

Recently Rohde et al. [6] has proposed a novel composite tube
design which yields prescribed bend–twist coupling. The design
is described in detail in the Results and Discussions section. In this
paper we present a beam theory for an anisotropic composite
tube subjected to combined bending and torsion to demonstrate
tube for various types of anisotropy is discussed. The analytical
results are verified using finite element analysis. A simple formula
is derived for the shear center distance – distance of shear center
from the axis of the tube – which can be used to optimize the
design. Some of the examples considered are of tubes with
non-zero shear center distance, i.e., the shear center does not
coincide with the center of the tube.

It is worth pointing out that Rao and Chan [7] developed an ana-
lytical model for the analysis of laminated tubes subjected to axial
force and twisting moment. They modified the lamination theory
to account for the ply stiffness of a differential element along the
circumference of the tube using appropriate transformation. Then
the stiffness of the tube was obtained by integrating the stiffness
around the circumference. In the present approach suitable
assumptions are made about the deformation of the tube and the
shear stress distribution that leads to an independent beam theory
for composite tubes.
2. Analytical model

2.1. A beam theory for combined bending and torsion of tubes

Consider a thin-walled tube with the tube axis parallel to the
x-axis. The mean radius of the tube is R and the wall thickness
h << R. The tube is made of two anisotropic materials – top half
ð0 < h < pÞ is made of Material 1 and the bottom half
ðp < h < 2pÞ is of Material 2. We assume that the tube is in a state
of plane stress normal to the radial direction n (see Fig. 2) such that
rnn ¼ snx ¼ sns ¼ 0. Furthermore, we assume the hoop or circum-
ferential stress rss ¼ 0. Thus the two significant stresses are the
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Fig. 1. A composite tube with shear center away from the tube axis. The tube is
subjected to an eccentric transverse force without twisting.
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Fig. 2. Cross section of the tube and the coordinate system.
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axial stress rxx and the shear stress sxs. We assume that the tube
deforms such that plane sections remain plane and normal to the
tube axis as in Bernoulli–Euler beam theory. As will be seen later
this assumption works well for the thin-walled, long tubes consid-
ered in this study. Then the displacement field can be written as

uðx; y; zÞ ¼ u0ðxÞ � y
dv0

dx
� z

dw0

dx
vðx; y; zÞ ¼ v0ðxÞ
wðx; y; zÞ ¼ w0ðxÞ

ð1Þ

where u0; v0 and w0 are the deflections of the beam axis. The axial
strain takes the form

exx ¼
@u
@x
¼ @u0

@x
� y

d2v0

dx2 � z
d2w0

dx2 ¼ exo þ yjy þ zjz ð2Þ

where jy and jz are the curvatures. We do not make any specific
assumption about the rotation of the cross section except the aver-
age rotation of the cross-section about the x-axis is denoted by wx.
But we assume the shear stress is uniform and given by

sxs ¼
T

2pR2h
¼ s0 ð3Þ

where T is the torque acting on a cross section.
Though the above assumption about the shear stress distribu-

tion seems to be trivial, it is important in the present context. In
traditional torsion theories the plane cross section of the tube is
assumed to rotate as a rigid body leading to constant cxs shear
strain along the circumference of the tube. When the material is
also homogenous it leads to constant shear stress sxs which is con-
sistent with the assumption in Eq. (3) above. However, when the
tube is made of two different materials, the shear stress sxs has
to be continuous at the interface between the two materials, but
the shear strain cxs does not have to be continuous at the interface.
That is why no specific kinematic assumption is made regarding
the rotation of the tube.

The constitutive relation for both materials can be written in
the form [8]
exx

cxs

� �
¼

1
Ex

gxs;x
Gxs

gx;xs
Ex

1
Gxs

" #
rxx

sxs

� �
¼

�S11
�S16

�S16
�S66

" #
rxx

sxs

� �
ð4Þ

where E and G are Young’s modulus and shear modulus, respec-
tively, g is the coupling term called coefficient of mutual influence
of the material, and �Sij are the transformed compliance terms of the
lamina. Then from (2)–(4) we obtain

rxx ¼ Exexx � gx;xssxs ¼ Ex ex0 þ yjy þ zjz
� �

� gx:xss0 ð5Þ

The force and bending moment resultants are defined as

P;My;Mz
� �

¼
Z

A
rxx 1; z;�yð ÞdA

¼
Z 2p

0
rxx 1;R sin h;�R cos hð ÞRhdh ð6Þ

where the integration is performed over the cross section of the
tube. Substituting for rxx from (5) we obtain

P;My;Mz
� �

¼
Z p

0
Eð1Þx ex0 þ R cos hjy þ R sin hjz
� �

� gð1Þx;xss0

h i

� 1;R sin h;�R cos hð ÞRhdhþ
Z 2p

p
Eð2Þx ex0 þ R cos hjy
�h

þR sin hjzÞ � gð2Þx;xss0

i
1;R sin h;�R cos hð ÞRhdh ð7Þ

where the superscripts (1) and (2) refer to the two materials.
Performing the integration we obtain relations between the force
and moment resultants and deformations:

�ExA AR
p DEx

AR
p DEx

�ExI

" #
ex0

jz

( )
¼

P

My

( )
þ

A�gx;xs

2R2hDgx;xs

( )
s0

�ExIjy ¼ �Mz

ð8Þ

In the above equations �Ex is the average Young’s modulus given by
�Ex ¼ Eð1Þx þ Eð2Þx

� �
=2; DEx is the difference in the Young’s moduli,

DEx ¼ Eð1Þx � Eð2Þx

� �
. Similarly �gx;xs ¼ ðgð1Þx;xs þ gð2Þx;xsÞ=2 and

Dgx;xs ¼ gð1Þx;xs � gð2Þx;xs

� �
; A ¼ 2pRh is the cross sectional area and I is

the second moment of inertia given by I ¼ pR3h. Eq. (8) can be
inverted to obtain

ex0

jz

( )
¼ 1

K

�ExI �AR
p DEx

�AR
p DEx

�ExA

" #
P

My

( )
þ

�gx;xs=R

Dgx;xs=p

( )
T

 !

jy ¼ �Mz=�ExI

where K ¼ �E2
x AI � ARDEx

p

� 	2

ð9Þ

Thus one can calculate the deformations from the force and
moment resultants. The deflections can be obtained by integrating
the strains and curvatures as will be shown in the examples.
From Eq. (9) it is evident that a torque T can result in curvature
jz causing deflection of the tube in the z-direction. It is interesting
to note that the torque T does not cause curvature jy and this is due
to symmetry of the cross section about the z-axis.

2.2. Angle of twist

The average torsional rotation wx is calculated as follows. Let us
define the average unit angle of twist �/ ¼ dwx=dx. The shear strain
can be written as

cxs ¼
@us

@x
þ 1

R
@u
@h
¼ R/þ 1

R
@u
@h

ð10Þ



Fig. 3. An isometric view of the composite tube showing different fiber orientations
on the top and bottom halves.
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Fig. 4. The left figure shows the top half of the tube with fiber orientation +a. Right
figure shows the bottom half (fiber angle �a) viewed from the top. Note the
difference in the direction of circumferential direction (s-axis) in the two figures.
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where us is the displacement at a point in the tangential direction.
The first term on the RHS of the above equation has been written as
@us=@x ¼ R/, where /ðsÞ is the unit angle of twist at a given location
s. Then the average unit angle of twist is obtained as

�/ ¼ 1
2p

Z 2p

0
/dh ¼ 1

2p

Z 2p

0

cxs

R
dh� 1

2p

Z 2p

0

1
R2

@u
@h

dh

¼ 1
2pR

Z 2p

0
cxsdh ð11Þ

Note the second integral in the above equation vanishes as it is the
contour integration of an exact differential. From the constitutive
relation (4) the shear strain at a point on the circumference of the
tube can be written in terms of stresses as

cxs ¼
gx;xs

Ex
rxx þ

sxs

Gxs
ð12Þ

From (12) it is clear that the shear strain cxs will not be continuous
across the interface between Materials 1 and 2 because of the differ-
ence in elastic constants and also due to the difference in bending
stress rxx. That is why we calculate the average rotation by integrat-
ing the unit angle of twist along the circumference of the tube.

Substituting for rxx from (5) into (12) and then substituting for
cxs from (12) into (11) the average unit angle of twist can be
derived as

�/ ¼
�gx;xs

R
ex0 þ

Dgx;xs

p
jz þ

1
R
�

g2
x;xs

Ex

� 	
þ 1

Gxs

" #
s0 ð13Þ

where

g2
x;xs

Ex

� 	
¼ 1

2

gð1Þx;xs

� �2

Eð1Þx

þ
gð2Þx;xs

� �2

Eð2Þx

0
B@

1
CA 1

Gxs

¼ 1
2

1

Gð1Þxs

þ 1

Gð2Þxs

 !
ð14Þ

Note that �Gxs is the harmonic mean of the shear moduli of the two
materials. Once the deformations ex0 and jz are calculated from (9),
the unit angle of twist can be calculated using (13). Using Eq. (9)
one can express ex0 and jz in Eq. (13) in terms of force and moment
resultants P; My and T. Thus it is obvious that a bending moment
My about the y-axis can cause twisting in the tube demonstrating
the bend–twist coupling.

2.3. Shear stress due to transverse forces

The present formulation is based on Euler–Bernoulli beam the-
ory and hence the shear stresses due to transverse forces Vy and Vz

are not accounted for. Only the shear stresses due to the torque are
included. The transverse shear stresses can be recovered from
rxxðxÞ using the equilibrium equation as in classical mechanics of
materials. First consider the shear force Vz. The bending moment
created will be My and they are related by dMy=dx ¼ Vz.
Integrating the equilibrium equation we obtain

@rxx

@x
þ @sxs

@s
¼ 0) sxsðsÞ ¼ sxsð0Þ � R

Z h

0

@rxx

@x
dh ð15Þ

Substituting for rxx from (5) we obtain

sxsðsÞ ¼ sxsð0Þ � R
Z h

0

@ Ex ex0 þ zjzð Þð Þ
@x

dh ð16Þ

Again substituting for ex0 and jz from (9) in terms of My and using
dMy=dx ¼ Vz:

sxsðsÞ ¼ sxsð0Þ �
VzR
K

Z h

0
Ex
�AR
p

DEx þ �ExAz
� 	

dh

¼ sxsð0Þ �
VzR

2A
K

Z h

0
Ex
�DEx

p
þ �Ex sin h

� 	
dh ð17Þ
Performing the above integration we obtain an expression for shear
stresses due to Vz:

sxsðhÞ ¼ sxsð0Þ �
VzR2AEð1Þx

K
�DEx

p
hþ � cos hþ 1ð Þ�Ex

� 	
;

0 < h < p ¼ sxsð0Þ �
2VzR

2AEð1Þx Eð2Þx

K
� VzR

2AEð2Þx

K
�DEx

p
h� pð Þ � 1þ cos hð Þ�Ex

� 	
; p < h < 2p ð18Þ

Similarly we can derive an expression for transverse shear stress
due to shear force Vy as:

sxsðsÞ ¼ sxsð0Þ � R
Z h

0

@ Exyjy
� �
@x

dh ð19Þ

Substituting for jy from (9) and using dMz=dx ¼ �Vy:

sxsðhÞ ¼ sxsð0Þ �
VyR2

�ExI

Z h

0
Ex cos hdh

¼ sxsð0Þ �
VyR2Eð1Þx sin h

�ExI
; 0 < h < p

¼ sxsð0Þ �
VyR2Eð2Þx sin h

�ExI
; p < h < 2p ð20Þ
3. Application to fiber composite tubes

3.1. Tube made of an anisotropic material with different orientations

Recently Rohde et al. [6] have proposed a novel composite tube
design which exhibits the bend–twist coupling described in the
previous section (see Fig. 3). In this design two different lay-ups
or fiber orientations are used for each half of the circular tube.
Assume the tube is made of a unidirectional fiber composite. The
fiber-angle is the angle between the fiber direction (1-direction)
and the x-axis. It is assumed þa for the top half of the tube
(Material 1) and �a for the bottom half (Material 2) as shown in
Figs. 4 and 5.
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Fig. 5. Another view of the composite tube shown in Fig. 4 with opposing fiber angles in the top and bottom halves of the tube. Note that s is the circumferential direction.
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Fig. 6. Shear center for a tube made of an anisotropic material with different
orientation of the principal material axis in the top and bottom halves of the tube as
shown in Fig. 3.
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The elastic constants in the x—s coordinate system can be
obtained from the orthotropic engineering elastic constants
E1; E2; G12 and m12 as follows [8]:

1
Ex
¼ 1

E1
l4 þ �2m12

E1
þ 1

G12

� 	
l2m2 þ 1

E2
m4

1
Gxs
¼ 2

2
E1
þ 2m12

E1
þ 4m12

E1
� 1

G12

� 	
l2m2 þ 1

G12
l4 þm4
� �

gx;xs

Ex
¼ 2

E1
þ 2m12

E1
� 1

G12

� 	
l3mþ �2m12

E1
� 2

E2
þ 1

G12

� 	
lm3

l ¼ cos a; m ¼ sina

ð21Þ

It is obvious from the above relations that for the present example

Eð1Þx ¼ Eð2Þx ¼ �Ex; DEx ¼ 0

Gð1Þxs ¼ Gð2Þxs ¼ �Gxs; DGxs ¼ 0

gð1Þx;xs ¼ �gð2Þx;xs; �gx;xs ¼ 0; Dgx;xs ¼ 2gð1Þx;xs

g2
x;xs

Ex

� 	
¼

gð1Þx;xs

� �2

�Ex

ð22Þ

Then Eqs. (8) and (13) can be simplified as

�ExAex0 ¼ P
�ExIjz ¼ My þ 4R2hgð1Þx;xss0

�ExIjy ¼ �Mz

�/ ¼ 2gð1Þx;xs

p
jz þ

1
R

1
�Gxs
�

gð1Þx;xs

� �2

�Ex

2
64

3
75s0

ð23Þ

From the above relations (2nd and 4th equations) one can note the
coupling between the bending moment My and the torque T. The
two relevant equations can be written as

jz ¼
My

�ExI
þ 2gð1Þx;xs

p�ExI
T

�/ ¼ 4gð1Þxs;x

p�GxsJ
My þ 1þ 8

p2 � 1
� 	

gð1Þx;xsg
ð1Þ
xs;x

� 	
T

�GxsJ

ð24Þ

In deriving the above relations we have used T ¼ 2pR2hs0;

J ¼ 2I ¼ 2pR3h, and the symmetry relation gx;xs=Ex ¼ gxs;x=Gxs.
The shear stresses due to the transverse force Fz can be obtained

from (18) using DEx ¼ 0 and Eð1Þx ¼ Eð2Þx ¼ Ex:

sxsðhÞ ¼ sxsð0Þ þ
VzR

2

I
cos h� 1ð Þ ð25Þ

Note that the shear stress expression is the same for both top and
bottom halves of the tube. The constant sxsð0Þ can be evaluated
from the fact that the moment of the shear stresses about the center
should vanish as the force Fz is applied at the center. The final
expression for shear stress takes the form
sxsðhÞ ¼
VzR2

I
cos h ¼ VzR

I
y ð26Þ

Thus the shear stress distribution will be symmetric about the
z-axis such that sxsðyÞ ¼ sxsð�yÞ . Thus the shear flow will be in
the counter clockwise direction on the right half of the tube
(y > 0) and in the clockwise direction in the left half (y < 0). The
shear stresses will not contribute to rotation about the x-axis as
the material is also symmetric about the z-axis.

3.2. Shear center

Consider a cantilevered tube clamped at x = 0. First we will con-
sider the case where the tube is subjected to a force Fz at the tip
x ¼ L. The force is such that the line of action is through the center
of the tube. The bending moment distribution is given by
MyðxÞ ¼ �FzðL� xÞ. The tip rotation about the x-axis can be
obtained from the second of Eq. (24):

dwx

dx
¼ �/ ¼ 4gð1Þxs;x

p�GxsJ
Fzðx� LÞ ð27Þ

Integrating the above equation and noting wxð0Þ ¼ 0 we obtain the
tip rotation wF

x due the transverse force Fz as

wF
x ¼
�2gð1Þxs;x

p�GxsJ
FzL2 ð28Þ

From (24) the rotation wT
x due to torque T can be derived as

wT
x ¼ 1þ 8

p2 � 1
� 	

gð1Þx;xsg
ð1Þ
xs;x

� 	
TL
�GxsJ

ð29Þ

The location of the shear center can be derived as follows. Let the
shear center distance – distance of the shear center from the tube
axis – be denoted by ey (Fig. 6). That is, if the transverse force Fz

is applied at the shear center it would not produce any twisting
of the tube, as the torque produced by the eccentric loading, Fzey,
would cause an angle of twist equal in magnitude but opposite in
direction to that produced by the force Fz. Then,

wF
x ¼ �

wT
x

T
Fzey
� �

) ey ¼
� wF

x=Fz
� �
wT

x=T
� � ð30Þ
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Substituting from (28) and (29) in the above equation, the shear
center distance can be written in a non-dimensional form as

ey

L
¼
� wF

x=Fz
� �
wT

x=T
� �

L
¼ 2gð1Þxs;x

p 1þ 8
p2 � 1
� �

gð1Þx;xsg
ð1Þ
xs;x

� � ð31Þ

From (23) we note that the bending moment Mz due to a transverse
force Fy will not cause any twisting. Hence the shear center will be
on the y-axis at a distance ey from the center of the tube.

We have already shown that the transverse shear stresses due
to the force Fz do not contribute to the rotation due to symmetry
of the across section about the z-axis. Thus we note the eccentric-
ity of the shear center in the present case is due do the
extension-shear coupling of the material. In homogeneous beams
the eccentricity of the shear center is due to asymmetry of the
cross section, e.g., a C-channel. That is why the shear center loca-
tion in the present case is independent of the radius R, but pro-
portional to the tube length L and the coefficients of mutual
influence g.

3.3. Laminated composite tubes

In most applications the tube has to be made of multiple plies
with different fiber orientations to achieve a given bending stiff-
ness, torsional stiffness and desired bend–twist coupling. In that
case the laminated tube can be modeled as a tube with an equiva-
lent anisotropic material. The compliance matrix ½�S� (see Eq. (4)
above) of such an equivalent material can be obtained from the
in-plane stiffness [A] of the laminate as follows [8]:

½�Seq� ¼ h½A��1 ð32Þ

where h is the laminate thickness. It should be noted that the
above idealization is valid only for thin-walled tubes such that
h=R << 1.

3.4. Tapered tubes

In cantilevered tubes the bending moment varies linearly as
My ¼ Fzðx� LÞ. Hence, it makes sense to use a tapered tube for
maximum efficiency. In the following we derive an expression
for ey for tapered tubes. Assume the radius of the tube varies as
RðxÞ ¼ R0 þ kx, where k ¼ ðRL � R0Þ=L. First we consider the case
where only the transverse force Fz is acting and torque T = 0.
From (24) the angle of rotation per unit length can be written as

�/ ¼ dwx

dx
¼ 4gð1Þxs;x

p�GxsJðxÞ
Fzðx� LÞ ð33Þ
Fig. 7. (a) FE mesh of the composite tube; (b) deformed shape after subjected to a torque
figure due to magnification of displacements.
Note that JðxÞ ¼ 2pR3ðxÞh. Integrating the above equation and
applying the BC wxð0Þ ¼ 0 we obtain the angle of twist wF

x at the
tip of the tube due to the transverse force as

wF
x ¼

�gð1Þxs;xFzL2

2p2GxshR2
oRL

ð34Þ

Similarly the unit angle of twist for a torque applied at the tip is
given by (see Eq. (24))

�/ ¼ 1þ 8
p2 � 1
� 	

gð1Þx;xsg
ð1Þ
xs;x

� 	
T

�GxsJðxÞ
ð35Þ

Note that JðxÞ ¼ 2pRðxÞ3h. Integrating and applying the BC
wxð0Þ ¼ 0, we obtain

wT
x ¼ 1þ 8

p2 � 1
� 	

gð1Þx:xsg
ð1Þ
xs;x

� 	
TLðRo þ RLÞ
4pGxsR

2
oR2

L h
ð36Þ

where the superscript T denotes the angle of twist due to torque.
Then the location of the shear center can be derived as before:

ey

L
¼ �ðw

F
x=FzÞ

ðwT
x=TÞL

¼ 4gð1Þxs;x

p 1þ 8
p2 � 1
� �

gð1Þx:xsg
ð1Þ
xs;x

� �
1þ R0

RL

� � ð37Þ

Again we note that the shear center distance is independent of the
radius of the tube but proportional to the tube length L. It also
depends on g0s and the amount of taper defined by the ratio R0/RL.

4. Finite element analysis

The commercial finite element software Abaqus was used for
computational analysis of aforementioned tubes. Eight-node dou-
bly curved thick shell elements (S8R Element) were used to model
the tubes. This element has six DOFs per node. About 30 elements
were used along the circumference of the tube. The number of
elements in the length direction was such that the aspect ratio of
elements is approximately equal to unity. That is, the elements
were almost square in shape. In the examples considered the tube
was fixed at one end by setting all degrees of freedom equal to
zero. At the free end, the center a reference node was created at
the center of the tube and it was connected to the circumferential
nodes using multipoint constraints. The transverse force and the
couple were applied at the reference node. The finite element
model including the deformed shape of the tube is shown in Fig. 7.

5. Results and discussion

All examples below, except Example 1C which is for a tapered
tube, are concerned with a cantilevered tube of length L, mean
at the tip. Note that the circumferential expansion of the tube is exaggerated in the



Table 1
Results for tubes made of one orthotropic material but with opposite fiber orientations in the top and bottom halves. The top half of the tube consists of [+20] layers and the
bottom half of [�20] layers.

Length L (mm) Load Fz (N) T (N-mm) Tip deflection

w0ðLÞ 10�3 mm
� � Tip rotation wxðLÞ

(10�6 Radians)
Shear center ey=L

FEA Analytical FEA Analytical FEA Analytical

200 Fz = 1 9.162 9.211 77.21 78.70 0.202 0.202
T = 1 77.14 78.71 1.915 1.951

300 Fz = 1 30.71 31.11 174.0 177.0 0.202 0.202
T = 1 174.0 177.0 2.881 2.920

Table 2
Results for tubes made of two different composite laminates. The lay-up for the top half of the tube is [0/202/0]S; for the bottom half [0/-202/0]S.

Length L (mm) Load Fz(N) T (N-mm) Tip deflection

w0ðLÞ 10�6 mm
� � Tip rotationwxðLÞ

(10�6 Radians)
Shear center ey=L

FEA Analytical FEA Analytical FEA Analytical

200 Fz = 1 4,462 4,254 25.23 25.49 0.0820 0.0820
T = 1 25.23 25.49 1.539 1.555

300 Fz = 1 14,610 14,350 56.83 57.36 0.0820 0.0820
T = 1 56.8 57.36 2.31 2.332
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radius R = 10 mm and wall thickness h = 2 mm. The tapered tube’s
radius varies from 5 mm at the fixed end to 15 mm at the free end.

5.1. Example 1A – one anisotropic material

The laminate configuration or lay-up is denoted by ½20��. The
superscript ⁄ denotes that for the top half of the tube a ¼ þ20�

and for the bottom half a ¼ �20� (see Fig. 3). The elastic constants
are: E1 = 138 GPa; E2 = 9 GPa; G12 = 6.9 GPa and m12 ¼ 0:3. Tubes of
two different lengths, 200 and 300 mm, were considered to
demonstrate the length-dependence of shear center location.
Two different forces were considered: a transverse tip force Fz

applied at the center of the tube and a torque T. In Table 1 the FE
results are compared with that obtained form the analytical
method. It can be noted that the agreement for deflection, rotation
and the shear center distance are excellent. Furthermore, the ratio
ey=L does not change at all for the two different lengths of the tube.

5.2. Example 1B – laminated tube

In this example we consider a laminated tube. The lay-up is
denoted by [0/(20⁄)2/0]T. Explicitly stated, the top half of the tube
has a lay-up given by [0/(20)2/0]T and the bottom half
[0/(�20)2/0]T. The elastic constants of the ply material were same
as in Example 1A. The forces applied are similar to the previous
example. The results are presented in Table 2. Again one notices
that the agreement between the analytical results and FEA results
is excellent. The shear center distance specified by ey=L is smaller,
i.e., the shear center is closer to the tube center, for the laminated
tube compared to the 20-degree lamina in Example 1A, because
Table 3
Results for tapered laminated tubes.

Length L (mm) Load Fz (N) T (N-mm) Tip deflection

w0ðLÞ 10�6 mm
� �

FEA Analytic

200 Fz = 1 2,774 2,676
T = 1 22.38 22.66

300 Fz = 1 9,148 9,034
T = 1 50.37 50.99
the laminate includes some 0-degree plies. The effective coefficient
of mutual influence for the laminate is smaller than that for the
20-degree ply. A simple calculation shows that gx;xs



 

 ¼ 1:79 and

gxs;x



 

 ¼ 0:286 for the 20-degree lamina, whereas for the above

laminate gx;xs



 

 ¼ 1:26 and gxs;x



 

 ¼ 0:125. This reduction in the
effective coefficient of mutual influence due to the presence of
0-degree plies reduces the shear center distance also.

5.3. Example 1C – tapered laminated tube

The material properties and laminate configurations are same
as in Example 2 but the laminate is tapered with R0 = 5 mm and
RL = 15 mm. The results are presented in Table 3. The agreement
between analytical and finite element analysis is excellent. One
can note from Eq. (37) that the ratio ey=L depends only on the
effective coefficients of mutual influence and the ratio R0/RL. This
is confirmed by the FEA results also.

6. Summary

An analytical model is presented for thin composites tube sub-
jected to combined bending and torsion. The methods are applied
to a special design of composite tubes with different lay-ups in the
top and bottom halves of the tube cross section. Due to the differ-
ence in lay-ups, the tubes exhibit strong bend–twist coupling and
the shear center is away from the center of the tube. The shear cen-
ter distance is independent of the tube radius but is proportional to
the length of the tube and the effective coefficient of mutual influ-
ence of the laminates. The results are verified by using finite
Tip rotation wxðLÞ
(10�6 Radians)

Shear center ey=L

al FEA Analytical FEA Analytical

22.38 22.66 0.0412 0.0410
2.716 2.764

50.37 50.99 0.0411 0.0410
4.080 4.146
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element analysis of the tubes considered. The excellent agreement
in results suggests that the assumptions made in the analytical
model are reasonable and correct.
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